Vertex coloring without large polychromatic stars

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex coloring without large polychromatic stars

Given an integer k ≥ 2, we consider vertex colorings of graphs in which no k-star subgraph Sk = K1,k is polychromatic. Equivalently, in a star-[k]-coloring the closed neighborhood N[v] of each vertex v can have at most k different colors on its vertices. The maximum number of colors that can be used in a star-[k]-coloring of graph G is denoted by χ̄k⋆(G) and is termed the star-[k] upper chromati...

متن کامل

Edge-Colorings with No Large Polychromatic Stars

Given a graph G and a positive integer r, let f r (G) denote the largest number of colors that can be used in a coloring of E(G) such that each vertex is incident to at most r colors. For all positive integers n and r, we determine f r (K n;n) exactly and f r (K n) within 1. In doing so, we disprove a conjecture by Manoussakis, Spyratos, Tuza and Voigt in 4].

متن کامل

Vertex 2-coloring without monochromatic cycles

In this paper we study a problem of vertex two-coloring of undirected graph such that there is no monochromatic cycle of given length. We show that this problem is hard to solve. We give a proof by presenting a reduction from variation of satisfiability (SAT) problem. We show nice properties of coloring cliques with two colors which plays pivotal role in the reduction construction.

متن کامل

On vertex coloring without monochromatic triangles

We study a certain relaxation of the classic vertex coloring problem, namely, a coloring of vertices of undirected, simple graphs, such that there are no monochromatic triangles. We give the first classification of the problem in terms of classic and parametrized algorithms. Several computational complexity results are also presented, which improve on the previous results found in the literatur...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2012

ISSN: 0012-365X

DOI: 10.1016/j.disc.2011.04.013